Dependent Hierarchical Beta Process for Image Interpolation and Denoising
نویسندگان
چکیده
A dependent hierarchical beta process (dHBP) is developed as a prior for data that may be represented in terms of a sparse set of latent features, with covariate-dependent feature usage. The dHBP is applicable to general covariates and data models, imposing that signals with similar covariates are likely to be manifested in terms of similar features. Coupling the dHBP with the Bernoulli process, and upon marginalizing out the dHBP, the model may be interpreted as a covariatedependent hierarchical Indian buffet process. As applications, we consider interpolation and denoising of an image, with covariates defined by the location of image patches within an image. Two types of noise models are considered: (i) typical white Gaussian noise; and (ii) spiky noise of arbitrary amplitude, distributed uniformly at random. In these examples, the features correspond to the atoms of a dictionary, learned based upon the data under test (without a priori training data). State-of-the-art performance is demonstrated, with efficient inference using hybrid Gibbs, Metropolis-Hastings and slice sampling.
منابع مشابه
An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملImage Denoising and Zooming under the LMMSE Framework
1 Corresponding author. Email: [email protected]. This research is supported by the Hong Kong General Research Fund (PolyU 5330/07E) and the National Science Foundation Council of China under Grant no. 60634030. Abstract – Most of the existing image interpolation schemes assume that the image to be interpolated is noise free. This assumption is invalid in practice because noise will be...
متن کاملLandmark-Dependent Hierarchical Beta Processfor Robust Sparse Factor Analysis
A computationally efficient landmark-dependent hierarchical beta process is developed as a prior for data with associated covariates. The landmarks define local regions in the covariate space where feature usages are likely to be similar. The landmark locations are learned, to which the data are linked through normalized kernels. The proposed model is well suited for local latent feature discov...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011